Lerninhalte in Mathe
Abi-Aufgaben GK (WTR)
Abi-Aufgaben GK (CAS)
Digitales Schulbuch
Inhaltsverzeichnis

B2 - Analytische Geometrie

1
Mit einem GPS-Empfänger kann man seine Position auf der Erde metergenau bestimmen. Dies geschieht mit Hilfe von Satelliten, die ihre Signale in alle Richtungen zur Erde senden. Je mehr Satelliten empfangen werden können, desto sicherer und genauer wird die Positionsbestimmung. Nimm an, dass sich der Satellit NAVSTAR momentan auf der Position \(N(0\mid10\mid20203) \)und der Satellit KOSMOS auf \(K(4309\mid2801\mid20513)\) befindet (alle Angaben in km). Ein GPS-Empfänger auf der Erde empfängt die Signale beider Satelliten. Das Signal von NAVSTAR wird aus Richtung des Vektors \(\overrightarrow{v}=\begin{pmatrix}25\\ 37\\ -1010\end{pmatrix}\) empfangen und das von KOSMOS aus Richtung des Vektors \(\overrightarrow{w}=\begin{pmatrix}-13\\ -7\\ -70\end{pmatrix}.\)
1.1
Gib eine Gleichung der Geraden an, die von \(K\) aus in Richtung des Vektors \(\overrightarrow{w}\) verläuft, und beschreibe den Aufbau dieser Gleichung.
(3 BE)
1.2
Zeige, dass sich der GPS-Empfänger auf der Position \(E(500\mid750\mid3)\) befindet.
(4 BE)
1.3
Berechne den Abstand des Satelliten KOSMOS zum Empfänger.
(3 BE)
1.4
Berechne, in welchem Winkel zueinander die Signale beim Empfänger eintreffen.
(3 BE)
2
Geocaches sind in der Natur versteckte „Schätze“, die man mittels GPS-Koordinaten finden kann. Man kann sich diese immer beliebter werdende Freizeitbeschäftigung als eine Art elektronische Schatzsuche vorstellen. Die GPS-Koordinaten zu einem Geocache findet man im Internet.
Ein Schatzsucher steht in \(A(2\mid0\mid0)\) direkt am Fuße einer steil ansteigenden, mit einigen Bäumen bewachsenen Ebene. In der Nähe der Ebene befindet sich ein Geocache in \(G(3,1\mid6\mid1,4)\). Von seiner Position in \(A\) aus peilt der Schatzsucher zunächst die beiden in der Ebene liegenden, markanten Punkte \(B(1\mid3\mid1)\) und \(C(-5\mid6\mid3)\) an. (1 LE \(\mathrel{\widehat{=}}100\;\text{m}\) )
2.1
Bestimme eine Parametergleichung und eine Koordinatengleichung der Ebene \(E_1\), die durch die Punkte \(A\), \(B\) und \(C\) verläuft.
\([\text{zur Kontrolle: } E_1: 3x - 4y + 15z = 6]\)
(5 BE)
2.2
Erläutere die folgenden vier Rechenschritte und die Bedeutung der Rechnung im Sachzusammenhang:
  1. \(E_1:3x-4y+15z=6 \)\( \Rightarrow \overrightarrow{n_1}=\begin{pmatrix}3\\-4\\15\end{pmatrix}\)
  2. \(E_2:z=0 \Rightarrow \overrightarrow{n_2}=\begin{pmatrix}0\\ 0\\ 1\end{pmatrix} \)
  3. \( \cos(\gamma)=\dfrac{\mid \overrightarrow{n_1}\cdot \overrightarrow{n_2} \mid}{\mid \overrightarrow{n_1}\mid \cdot \mid\overrightarrow{n_2} \mid} \)\( =\dfrac{15}{\sqrt{250}}\Rightarrow \gamma \approx18,4^{\circ}\)
  4. \(\tan(\gamma)\approx 33,3 \;\%\)
(6 BE)
2.3
Zeichne die Lage des Geocaches in \(G(3,1\mid6\mid1,4)\) als Punkt im Material ein. Untersuche rechnerisch, ob der Geocache über, auf oder unter der Erdoberfläche versteckt ist.
(6 BE)
Material
Ebene